
robbit v3.0 documentation

a graphical simulator for multi-robot formations

Chitresh Bhushan and Sayandeep Purkayasth

December 7, 2007

1

This text is a brief description of the features that are present in the robbit version 3.0, 08 December 2007. This is
Edition 2.0, last updated 08 December 2007, of robbit documentation, for robbit, version 3.0.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.

2

The people involved in this project are listed below with contact details.

Antonelli Gianluca
Professor
Dipartimento di Automazione, Elettromagnetismo
Ingegneria dell’Informazione e Matematica Industriale
Università degli Studi di Cassino, Italy
antonelli@unicas.it
http://webuser.unicas.it/antonelli

Arrichiello Filippo
Research Assistant
Dipartimento di Automazione, Elettromagnetismo
Ingegneria dell’Informazione e Matematica Industriale
Università degli Studi di Cassino, Italy
f.arrichiello@unicas.it
http://webuser.unicas.it/arrichiello

Bhushan Chitresh
Undergraduate student
Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology Kharagpur
chitresh.bhushan@gmail.com
http://chitresh.co.nr

Prakash Chander
Undergraduate student
Department of Computer Science Engineering
Indian Institute of Technology Guwahati

Purkayasth Sayandeep
Undergraduate student
Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology Kharagpur
deepcyan@gmail.com
http://deepcyan.co.nr

The project website is http://webuser.unicas.it/robbit.
It is also available on Sourceforge: http://sourceforge.net/projects/robbit/.

3

mailto:antonelli@unicas.it
http://webuser.unicas.it/antonelli
mailto:f.arrichiello@unicas.it
http://webuser.unicas.it/arrichiello
mailto:chitresh.bhushan@gmail.com
http://chitresh.co.nr
mailto:deepcyan@gmail.com
http://deepcyan.co.nr
http://webuser.unicas.it/robbit
http://sourceforge.net/projects/robbit/

Contents

1 Introduction 5
1.1 Concerning robbit . 5
1.2 A bit more . 5

2 How to use this manual 6
2.1 Conventions . 6

3 Installation 7
3.1 Prerequisites . 7
3.2 Installation steps . 8

4 Features 9

5 Usage 11
5.1 Code flow . 11
5.2 Right-click menu . 11

6 Development 13
6.1 Data structures . 13
6.2 Code organisation . 13

4

1 Introduction

1.1 Concerning robbit

With so much research going on concerning robots in this world today, and so much more on wireless
networks, we decided that what this world really needs is a good platform for testing out motion algorithms
for robot formations. Now we all know how diffcult it is to get a bot moving how you want it to, so we
thought a simulator ought to do the trick. A 3D simulator: all the better. And so it was. With OpenGL in
one hand and OpenCV in the other, we set out to do what we were born to do: robbit.

I guess a wee bit on the nomenclature would do some good at this point. Well it so happens that just
before starting out on this wonderful venture, one of us was highly impressed by the LOTR series especially
by resilience of some good-natured hairy-footed creatures called hobbits. And viola! robbit it was.

1.2 A bit more

Professor A. Gianluca was looking into various motion algorithms and testing them out on real robot
MANETs (Mobile Ad-Hoc NETworks). These were contructed so that an algorithm decided each robot’s
coordinates according to some predefined objective. For example, we have 5 robots that are to surround
a randomly moving ball, then follow it. Now various algorithms are possible and testing each of them on
the physical plane is quite hectic, believe me. So he decided that he needed something on a simulated
environment. Thats where we came in.

So we started up with some sample codes and created a 3D environment consisting an experimentation
plane some moveable robots, a ball, and some lighting. Gradually we progressed from keyboard view control
to mouse control, from a dumb pink floor (what were we thinking then?!) and box-like robots to a shiny
chessboard floor, from crappy to perfect snapshots and even video recording. Now you could even place
obstacles on the chessboard to see if your robots can see them.

5

2 How to use this manual

2.1 Conventions

We’ll be following some conventions in the part of the manual that follows. They are noted in Table 1.

Text style What you’re looking at
text a file name
text a function name
text a variable name

text a linux package name

Table 1: Formatting conventions used in manual

6

3 Installation

3.1 Prerequisites

We used the following libraries as part of our project.

• OpenGL
The Intel Open Graphics Library is a set of data structures, and functions to implement 3 dimensional scene
rendering.

• GLU
The OpenGL Utility Library has some routines that provide higher-level drawing routines from the more primitive
routines that OpenGL provides.

• GLUT
The OpenGL Utility Toolkit is a library of utilities which primarily perform system-level I/O with the host operating
system. Functions performed include window definition, window control, monitoring of keyboard and mouse input,
and drawing some geometric primitives.

Together OpenGL, GLU, and GLUT are used in game graphics, etc. Here they serve as the foundation for rendering 3
dimensional objects like the robots, obstacles, the floor, the ball, etc. They also provide facilities for GUI, windowing,
etc. which we used to our advantage.

• OpenCV
The Intel Open Computer Vision Library is a set of data structures, and functions for image handling and processing.
We used its features of image saving and video recording to provide researchers a output format more appealing
than boring text files containing infinite coordinates, velocities, orientations, etc.

The above prerequisites may be obtained and installed as follows.

• Windows systems

– C/C++ compiler
We used Microsoft Visual C/C++ 6 compiler. We have provided the workspace we created in the package
under source/win32/Robbit.dsw. This may be used directly for further development.

– OpenGL, GLU, GLUT
We have provided the GLUT installation package along with our distribution. It maybe found under libra-
ries/glut/. Installation instructions are present in libraries/glut/README

– OpenCV
This may be obtained from SourceForge R©. A windows installer is available, which provides the basic header
files, dynamically linked libraries, etc.

Please read openCV instructions.pdf in case you plan to set up your own workspace, in which case, you
will need to configure it to find required files from the OpenCV installation.

• Linux/UNIX systems

– C/C++ compiler
We used GNU C compiler GCC4.1.2 (gcc), which is available from http://www.gnu.org.

– OpenCV
The source code from this library is available at SourceForge R©. Note that since video support is essential for
our project to be fully functional, it is necessary that you build OpenCV from sources with ffmpeg (a library
of audio/video codecs) support. Please read OpenCV installation instructions (available along with the source
package) especially the part dealing with libavcodec (a part of ffmpeg) support. For the same reason, it is
recommended that OpenCV binaries (libcv0.9.7-0, libhighgui0.9.7-0, libhighgui-dev, libcv-dev or
their later releases) not be used, unless the developer is sure that ffmpeg support is built into the binary.

7

http://sourceforge.net/projects/opencvlibrary/
http://www.gnu.org
http://sourceforge.net/projects/opencvlibrary/

– OpenGL, GLU, GLUT
The linux packages glutg3, glutg3-dev must be installed along with their dependencies, including hardware
dependent drivers. A package manager like synaptic will be able to tell you these packages and install them
for you. To test OpenGL installation, one may use a program like glxgears.

3.2 Installation steps

The source may be obtained from the project webpage: http://webuser.unicas.it/robbit or SourceForge:
http://sourceforge.net/projects/robbit/.

• Windows systems
After setting up the prerequisites, and adding OpenCV folders to the project include directories, simply open the
workspace, compile Robbit.cpp, and build a Release of the project. The final executable shall then be available in
source/win32/Release.

• Linux/UNIX systems
A makefile, Makefile has been provided that takes care of the compilation, linking, etc. Use the command below.

$ make Robbit

The binaries are produced and moved into the directory bin. Add this directory to the PATH variable if you may
require frequent use of the binary.

8

http://webuser.unicas.it/robbit
http://sourceforge.net/projects/robbit/

4 Features

We have endeavoured to make the interface as user-friendly and intuitive as possible. Apart from expected
features like pause/play, replay, exit, increase/decrease speed, we have provided the following features.

1. Changing camera location, viewing direction and zoom

(a) intuitive mouse controlled movement of the camera
This is easier to control than a keyboard control which involves delay and low resolution of movement.

(b) options for viewing from positions directly above the board (Top view), and from just above each robot
These allow close observation of the arena and may help improvement of the algorithm under test.

(c) Zoom in/out

2. Save snapshot
This function reads pixels from the frame buffer and processes them into a JPEG image using built-in OpenCV
library functions. Images are saved in the working directory with the following file name format.

capture_<time_int>_<theta>_<phi>.jpg

Here theta, phi refer to θ and φ of the OpenGL camera position with respect to the spherical coordinate system.1

time int refers to the time (in integer casted form) when the snapshot is taken.

3. Save video
This function uses built-in OpenCV library functions to write frames to an AVI file. The codec to be used can be
selected in Windows (A pop-up window shows the available codecs for video compression. One may be selected.)
whereas it is restricted to DIVX codec in linux environment. Default frames per second (fps) is 25 fps. Videos are
saved in the working directory with the following file name format.

capture_<start_time_int>_<theta>_<phi>.avi

Here start time int refers to the time (in integer casted form) from which video capture starts. theta, phi again
refer to θ and φ are the respective values of the start frame view. Please note that enabling video recording reduces
rendering speed and performance in general, due some inherent delay in the used OpenGL function to capture the
screen. This feature is currently under some investigation due to some bug reports.

4. Info Box
This is a sub window (within the animation window) that shows various runtime information. It shows the last
command passed, the zoom level, θ, φ, etc.
Please note that enabling enabling Info box option also reduces rendering speed and performance, in general due
some inherent delay in rapidly rendering changing text.

5. Obstacles
We have included the facility of allowing the user to define his own testing environment by placing obstacles of
arbitrary dimensions as required. For this purpose, all such obstacle information are to saved in a file Obstacle.txt
in a specified format noted in the file itselfin its commented part (lines starting with ’%’). A sample obstacled
environment is given so that the user may understand the format easier.

6. Coordinate generation
Earlier, we relied solely on an input file, the filename of which was stored in input file name in Definitions.h
which is by default, set to output pos.log. This file contains the coordinates of the various robots and ball at
many time samples in a specified format mentioned in its commented part (lines starting with ’%’).
However now the user also has the option of adding his own algorithm into the source code itself, so he may test it
without first generating an intermediate file. This is achieved through 2 sub-choices.

1x = ρ sin φ cos θ, y = ρ sin φ cos θ, z = ρ cos φ. ρ = 250units has been set constant at the start of the animation.

9

• You may opt for an online implementation of your algorithm. Here you must put your algorithm inside function
GetNextFrame(). You are expected to set all the values of the elements of the frame object current. An
example is provided for reference. Note that CPU intensive algorithms may slow down the simulation, making
it appear paused for short durations. In this respect, the next option is more preferable.

• You may opt to create an input file of the form of output pos.log (supplied) using your own algorithm.
However all writing operations must be stopped before the simulation starts. Here you are expected to put
your algorithm to generate the input file strictly in the format shown in output pos.log inside the function
WriteInputFile().

7. Trails
We have provided for tracing of each objects motion path using the concept of trails. This feature may be switched
off if required.

8. Median of robots
We have also rendered a point on the Experimental plane equivalent to the median of the positions of all the bots. In
the experiment suggested in the introduction, the distance between this median and the ball may serve as a measure
of the efficiency of the algorithm.

9. Support for different robot designs
We have added a choice between two hardcoded designs KheperaII and KheperaIII. A developer may added more
designs if required.

10. Collision detection
We have added a support for detection of collision of the robots with the ball, the obstacles and other robots. The
robots change color to red, green and yellow on colliding with another robot, the ball and an obstacle, respectively.

10

5 Usage

5.1 Code flow

The present code executes in the following sequence.

1. On running the executable, the user is first asked which of the following modes of frame generation should be
followed.

(a) Use existing output pos.log file for coordinate data input.

(b) Generate cooridnates for next frame using a function GetNextFrame(). This contains the algorithm for gen-
erating coordinates, velocities and orientations of the robots at any instant with/without previous frames’
information. The function presently contains a sample code which may be replaced by a user with a more
practical code.

(c) Generate new output pos.log using a user-defined algorithm stored in WriteNewFrame() and then use it for
simulation

2. Obstacles if any are read into memory from the file Obstacle.txt by function ReadObstacle().

3. Then the user is asked which design (Khepera II or Khepera III) is to be used for simulation.

4. The simulation is started. Now the user may control the simulation using keyboard shortcuts noted in Table 2 or
using the right-click menu.

Shortcut Action
Animation control

<escape> Stop and Exit the simulation at any time
<space> Toggle pause/play of simulation

r Replay animation from start
View control

0 Return view to isometric view
t Change view to Top view
s Take a snapshot of the simulation
v Toggle video recording of the simulation

+/- Zoom in/out

<number>
Shift OpenGL camera on to top of
robot numbered number

Accessories
i Toggle display of Information box
o show/hide obstacles
n Toggle numbering of the displayed robots

Table 2: Runtime keyboard shortcuts. Note: Uppercase forms of the specified characters may also be used with the same
effects.

5.2 Right-click menu

All the keyboard options have been included in the right-click menu. Over and above these, the following
animation options are also available.

1. Light control
Options for increasing number of enabled lights up to a maximum of 4 lights have been provided. The light source
positions, color and other parameters are configurable in Definitions.h

11

2. Animation speed control
Options for increasing speed of animation from 1X up to a maximum of 25X have been provided.

3. Robot design
At the moment, two designs are hardcoded and selectable. These are that of KheperaII and KheperaIII. Selection
of design may be done before start of simulation or at runtime (using right-click menu).

4. Trail display
The user may opt to switch off display of trails during runtime.

12

6 Development

6.1 Data structures

We created a class frame, containing the following elements and methods.

Data Type Variable/Function name What it does
float time current time of the frame
float time step current delay time (for sleep functions)
int bot design 1: Khepera II; 2: Khepera III

float bot x [no of bots] x-coordinate of the robots’ position [cm]
float bot y [no of bots] y-coordinate of the robots’ position [cm]
float bot vx [no of bots] x-component of the robots’ velocity [cm/sec]
float bot vy [no of bots] y-component of the robots’ velocity [cm/sec]
float bot orient [no of bots] orientation of the robots [rad]
float bot vorient [no of bots] angular velocity [rad/sec]

int bot hit [no of bots][2] bot hit[<bot number>][0] : not hit (0) or hit (1)
bot hit[<bot number>][1] : time of hit for each bot

float bot center x x-coordinate of current cetroid of the robots
float bot center y y-coordinate of current cetroid of the robots
float ball x x-coordinate of the balls’ position [cm]
float ball y y-coordinate of the balls’ position [cm]
float ball vx x-component of the balls’ velocity [cm/sec]
float ball vy y-component of the balls’ velocity [cm/sec]

(methods)
frame() constructor
update(int mode, ifstream fp) reads input file and updates object data
render frame() renders the frame data on using OpenGL functions

Table 3: Elements of class frame

It contains all the information required to render a frame. This information (as discussed earlier, may
be obtained from the input file output pos.log or using an algorithm (directly or indirectly).

6.2 Code organisation

The source code is organised as follows. Each function and method, function name() is contained in
its separate header file named function name.h. The filenames and an overview of the work of the
corresponding functions are noted in Table 4. The file Robbit.cpp contains the main code to be compiled
that uses these header files.

13

File What it does
BotHit.h Determines which robot has been hit and marks it

Definitions.h Animation parameter definitions & includes
DetectObstacleCollision.h Detects the collision beteween any robot and any obstacle

Display.h Main function which draws all the things in main window
DistancePointLine.h Returns if any robot has collided with a wall

DrawFloor.h Draws the floor on which robots are moving
DrawObstacle.h Renders the obstacles given in the ASCII file

DrawRightClickMenu.h Draws the right click menu
DrawString.h Draws 2D-text in the window
DrawTrails.h Draws trails of robots and ball

FrameRenderFrame.h This renders all elements of the frame object in the simulation window
FrameUpdate.h Reads from the ASCII log file and creates the current frame
GetNextFrame.h Creates the object for the next frame based on a user-defined algorithm

Init.h Initilization of the main window
KeyEventHandler.h Monitors the keyboard input
KillAnimation.h Kills the animation at any time as required

MenuSelect.h Monitors the right click menu Select
Motion.h Rotate the scene in 3D with the left mouse button
Mouse.h Monitors the mouse clicks
NextNo.h Takes a string and returns the next identifiable number

OutputCharacter.h Draws 3D-strings in the desired location (x, y, z) in window
PlayControl.h controls the animation (speed, begin & end)

PositionKhepera2.h Draws the KheperaII Robots with all the specifications
PositionKhepera3.h Draws the KheperaIII Robots with all the specifications

ReadObstacle.h Sets the corresponding Obstacle parameters from
Reshape.h Determines the Eye/camera location

RobotClass.h Contains the definitions of class frame
SubDisplay.h Draws the sub-window (info-box)
SubReshape.h Reshape for the Sub-Window
VideoDump.h Saves the current running simulation as video in AVI format
WindowDump.h Saves an animation snapshot (Screenshot)

WriteInputFile.h Write the input file output pos.log using user-defined algorithm
Robbit.cpp Intializes the main simulation window & its parameters

Table 4: The files involved and what they do

14

	Introduction
	Concerning robbit
	A bit more

	How to use this manual
	Conventions

	Installation
	Prerequisites
	Installation steps

	Features
	Usage
	Code flow
	Right-click menu

	Development
	Data structures
	Code organisation

