
Graphical Simulator for Multi-robot Systems

Chitresh Bhushan and Sayandeep Purkayasth

April 1, 2007

1 Objective

Our objective was to code a OpenGL application that could read the positions
and velocities of a given number of robots and render them onto a visual display
unit.

2 Implementation

2.1 Libraries used

We have used the following libraries for graphics rendering and image manipu-
lation.

• OpenGL - The Open Graphics Library
This Library has been used for rendering the various scenes onto the dis-
play unit.

• GLU - The OpenGL Utility Library
It has some routines that provide higher-level drawing routines from the
more primitive routines that OpenGL provides.

• GLUT - The OpenGL Utility Toolkit
It is a library of utilities which primarily perform system-level I/O with the
host operating system. Functions performed include window definition,
window control, monitoring of keyboard and mouse input, and drawing
some geometric primitives.

• OpenCV - The Open Computer Vision library
This Library impements image manipulation routines and has been used
to save snapshots of the simulation at runtime and also capture video
segments of the simulation.

3 Overview

We have created a scene containing a grid plane, on which the ball and a number
of bots are placed. On starting animation, data is read from the file (line by line,
one at a time for each frame) in realtime and next directly rendered on to the
screen output. A snapshot (JPG format) or a video (output file format is avi)
may be saved. The simulation may be restarted, paused, speeded up/down as

1

mailto:chitresh.bhushan@gmail.com
mailto:deepcyan@gmail.com


required. Also the number of enabled lights may be increased from none (0) to
four (4). The position and other light properties may also be set. The number
of available lights may also be increased. The OpenGL camera may be relocated
on top of any of the robots.

4 Compiling and building from source

We have built the necessary binaries using GCC 4.1.2 and Microsoft Visual
C++ 6.0 compilers. However it is recommended that the same are rebuilt on
the target computer.

4.1 Windows

The Microsoft Visual Studio 6.0 workspace we had created has been provided.
OpenCV and OpenGL libraries must be installed before compilation. Please
refer to their individual manuals for installation instructions.

• OpenCV
Stable version 1.0 has been used. Source Code is available from its project
page on SourceForge R©.
Please read openCV instructions.pdf for details on setting up a workspace
with OpenCV libraries.

• OpenGL, GLU, GLUT
These have been included along with source code.

4.2 Linux

OpenCV and OpenGL libraries must be installed before compilation. Details
follow.

• OpenCV
These are available from this SourceForge R© link. These following pack-
ages must be installed.
libcv0.9.7-0, libhighgui0.9.7-0, libhighgui-dev, libcv-dev
Further development might require libcvaux0.9.7-0 and libcvaux-dev

• OpenGL, GLU, GLUT
These following packages must be installed.
glutg3, glutg3-dev
Hardware dependent drivers are also required. We used libglu1-mesa,
libglu1-mesa-dev for MESA video hardware driver.

A makefile has been provided. Commands are as follows.

$ make Robot_Animation

2

http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/


5 Usage

A menu has been made available on right click within the animation win-
dow. This contains all runtime options. The keyboard equivalents are listed
in Table 1 .

Shortcut Action
Animation control

<escape> Stop and Exit the simulation at any time
<space> Toggle pause/play of simulation

r Replay animation from start
View control

0 Return view to isometric view
t Change view to Top view
n Toggle numbering of the displayed robots
s Take a snapshot of the simulation
v Toggle video recording of the simulation

<number>
Shift OpenGL camera on to top of
robot numbered number

+ Zoom in
- Zoom out

Accessories
i Toggle display of Information box

Table 1: Runtime keyboard shortcuts. Note: Uppercase forms of the specified
characters will also work.

Right-click menu All the keyboard options have been included in the right-
click menu. Over and above these, the following animation options are also
available.

1. Light control
Options for increasing number of enabled lights up to a maximum of 4
lights have been provided.

2. Animation speed control
Options for increasing speed of animation from 1X up to a manximum of
25X have been provided.

5.1 Major Features

5.1.1 Save snapshot

This function reads pixels from the frame buffer and processes them into a JPG
image using built-in OpenCV library functions. Images are saved in the working
directory with the following file name format.

capture_<time_int>_<theta>_<phi>.jpg

3



Here theta, phi refer to θ and φ of the OpenGL camera position with respect to
the spherical coordinate system.1 time int refers to the time (in integer casted
form) when the snapshot is taken.

5.1.2 Save video

This function uses built-in OpenCV library functions to write frames to an AVI
file. The codec to be used can be selected in Windows (A pop-up window shows
the available codecs for video compression. One may be selected.) whereas it is
restricted to DIVX codec in linux environment. Default frames per second (fps)
is 25 fps. Videos are saved in the working directory with the following file name
format.

capture_<start_time_int>_<theta>_<phi>.avi

Here start time int refers to the time (in integer casted form) from which
video capture starts. theta, phi again refer to θ and φ are the respective values
of the start frame.

Please note that enabling video recording reduces rendering speed and per-
formance, in general due some inherent delay in the used OpenGL function to
capture the screen.

5.1.3 Info Box

This is a sub window (within the animation window) that shows various runtime
information. It shows the last command passed, the zoom level, θ, φ, etc.

Please note that enabling enabling Info box option also reduces rendering speed
and performance, in general due some inherent delay in rapidly rendering chang-
ing text.

6 Technical details and Code editing

6.1 Working

The present code works in the following sequence.

1. The animation coordinate limits are found by reading in the whole
output pos.log file once. The animation floor is built using these X, Y
limits. Then the file read pointer is repositioned to the file beginning.

2. Now the output pos.log2 file is read in line by line. For each line each
frame is rendered, after taking into consideration the time delay between
the previous and the present frame times.

1x = ρ sin φ cos θ, y = ρ sin φ cos θ, z = ρ cos φ. ρ = 250 units has been set constant for the
simulation except while zooming in/out.

2The file to be read in can be changed directly from the code. Refer Definitions.h for
declarations.

4



Our code is organised as follows. All function and variable declarations and
include files are included in Definitions.h. Robot class.h contains file input
routines, and some variable are set here. Robot Animation.cpp contains the
OpenGL display and OpenCV screen capture routines.

Function What it does
Robot Class.h

display data displays the data
get data read the data from input

next no
finds the next number, reading from the string
and updates the string pointer position

Robot Animation.h
position robot Displays the robots at their respective positions

init Initializes OpenGL display
display Displays the environment and calls

play control Controls the start, speed and end of animation
mouse Mouse event Handler
reshape Handler for window resize

key event handler Handler for keyboard events
menuSelect Menu Funtions
motion Handles the Motion of mouse

outputCharacter Draws the string at any point
reshape Determines the Eye location

kill animation Stops the animation
WindowDump Takes the screenshot
video dump Records a video
drawString Draws the string in sub-window (2D text)
subReshape reshape for sub-window(info-box)
draw floor Draws the floor on which robots are moving
round to int Rounds off a float to an integer
sleepMilli sleep function for unix using nanosleep()

Table 2: The functions used and what they do

5


	Objective
	Implementation
	Libraries used

	Overview
	Compiling and building from source
	Windows
	Linux

	Usage
	Major Features
	Save snapshot
	Save video
	Info Box


	Technical details and Code editing
	Working


